

r.e. wright environmental, inc.

September 13, 1995

Mr. William D. Steuteville
On-Scene Coordinator
Superfund Removal Branch
U.S. Environmental Protection Agency
Region III
841 Chestnut Building
Philadelphia, PA 19107-4431

Re: Completion of PCB Removal at

Rogers Electric Site Cheverly, Maryland REWEI Project M95239

Dear Mr. Steuteville:

On August 3, 1995, R. E. Wright Environmental Inc. (REWEI) removed additional soil in the southern half of an area previously excavated at the referenced site. The excavation was performed in response to a positive laboratory analysis result for polychlorinated biphenyls (PCBs) in a confirmation sample after the initial excavation performed in June. That confirmation sample contained 414 parts per million (414 ppm) PCB.

The excavation activities performed on August 3, 1995 resulted in the deepening of the previously excavated area by approximately 18 inches. The excavated material was placed in a roll-off container and covered with a waterproof tarp pending confirmation sample analysis.

After the excavation was complete, three soil samples were collected from the affected area and composited for analysis. The sample was analyzed for PCBs by EPA Method 8080. The results of that analysis indicated no PCBs in concentrations greater than the laboratory quantification level of 0.11 ppm. The locations of the sample points are shown on the attached Figure 1. Copies of the laboratory analysis results are also attached.

On August 28, 1995, Clean Harbors Environmental Services, Inc. (CHI) transported the roll-off to Chemical Waste Management's (CWM) Model City, New York, Hazardous Waste Landfill for disposal. The final load consisted of 12.14 tons, and was hauled under Hazardous Waste Manifest No. NY B 498300 3.

The result of this most recent excavation, confirmation sample analysis, and removal and disposal activity indicates that Blake has satisfied its obligations under Consent Administrative Order No. III-91-58-DC and the Notice of Potential Liability dated March 9, 1995 with regard to PCB remediation at the Rogers Electric Site.

The final phase of the Rogers Electric remediation was conducted between April and August, 1995. The work was initiated by EPA's detection of residual PCB contamination in the extreme northwest corner of the site in October 1994. REWEI then collected and analyzed sixteen soil samples surrounding EPA's sample point location. The analyses of these samples that PCB contamination was present on-site in excess of generally accepted cleanup levels. REWEI's sampling effort indicated that PCBs existed in concentrations greater than 10 ppm in an irregularly shaped area measuring approximately 35 x 15 feet, around EPA's initial sampling point.

Based on the sampling and analysis as described above, REWEI made an initial excavation to remove the identified contaminated area. On June 26, 1995, CHI hauled 21.15 tons of PCB-contaminated soil to CWM's landfill in Model City, New York for disposal. The material was hauled under Hazardous Waste Manifest No. NY B 498297 6.

After the first load of contaminated soil was disposed of, REWEI responded to EPA's request for additional sampling outside the Rogers Electric north and west fences. In total, fifteen samples were collected. The results of that sampling and analyses effort indicated concentrations of PCBs lower than the 10 ppm in 13 of the 15 samples. Two samples outside the north fence contained concentrations of PCB slightly above the action level, at 10.7 and 12.8 ppm, respectively. The level of PCBs detected in both samples is very close to levels acceptable at unrestricted sites and well below the unrestricted industrial land use action level of 25 ppm. Therefore, REWEI petitioned EPA to permit Blake to leave the affected soils in place. The petition was granted by a letter dated August 15, 1995.

I trust this information will be satisfactory for your needs. Should you have any questions or need additional information, don't hesitate to call me at (410) 876-0280.

Sincerely,

R. E. WRIGHT ENVIRONMENTAL, INC.

Timothy N. Gardner

Project Manager

TNG:aea

cc:

Chester White John Seymour M1995/52391.5

SAMPLE DATA SUMMARY PACKAGE

Table of Contents

- 1. Narrative
- 2. Chain-of-Custody Records
- 3. Results of Analyses
- 4. Chromatograms of Samples and Method Blanks

1. Narrative

NARRATIVE

Laboratory Name: Maryland Spectral Services, Inc. (MSS)

Date Sample Delivered to MSS Laboratory: 3 August 1995

Project: Rogers Electric; #95239

Project Manager: Mr. Tim Gardner

Results for the following sample are included in this data package:

Client ID MSS ID Matrix Analysis

EXC-B 950803-09 Soil PCBs (8080)

The Polychlorinated Biphenyls (PCBs) analyses were performed by U.S. EPA Methods 3540/8080 (Soxhlet/GC/ECD). Fifteen grams of each sample was extracted in a Soxhlet apparatus. The extracts were taken to a final volume of 10 mL and analyzed by GC/ECD using capillary chromatography.

Results of analysis are presented in Section 3 and are reported as milligrams per kilogram (parts per million) on a dry-weight basis.

All sample preparations and analyses were completed within the required holding time limitations.

Each sample, standard, and blank was spiked with the surrogate compound dibutyl chlorendate (DBC) to monitor method performance. Results of surrogate recoveries are presented in Section 3.

Chromatograms of samples and method blank analyses are provided in Section 4.

RELEASE OF THE DATA CONTAINED IN THIS HARDCOPY DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY MANAGER OR HIS DESIGNEE, AS VERIFIED BY THE FOLLOWING SIGNATURE:

Michael M. Robison DATE: 9 Aug 95

9 August 1995

2. Chain-of-Custody Records

1250000

PHONE ORDER TAKEN	BY:					
		,		1	- 12	

Wright Lab Services, Inc.

DATE ORDERED: 8 / 3 / 95			С	۸IN	OF	CU	STO	DY	REC	ORE)		D	ATE	REQU	ESTE	D:	/	/
REPORT TO: RE WRIGHT ENV.	CON	TACT	T	-14	4	ARI	DNE	R				HONE 4/ ROJE	NO.	376	02	80	SALESI		
			NAME R	060	25	EI	EC	TRI			P	ROJE	CTNO	. ,	20	-0-	P.O. NO	,	
	DATI	ESAM	PLED	8	13/	75					s	AMPL	ER(S)	~	7	1			
	1			/	1					AN	IALY!	SES TO) RF F	PERF	OBME	<u> </u>			7
BILL TO: RE WRIGHT ENV		IME	TAL NO SAMPLI	ON CONT	S. S						/			}					/
SAMPLE DESCRIPTION/LOCATION			(5) C											/	/. /	//			<u>.</u>
1 Exc-B	AM	1	V							f			\leftarrow	$\overline{}$	(0	-11	(3 -	REMARK	
2	1					-	<u> </u>				-				2.2	न्त	N	-0603	-09
3					-										-				
4	-																		
5	-																	50%	5444.664
6																			
7																			
8											HINE								
9																			
10																		25	
REMARKS:											1				SHIPE	PING C	CARRIE	R:	
															SHIP	PING T	ICKET	NUMBER:	
																		Y SEAL:	
		RECE	IVED,	BY:				1	АТЕ	TII	MF	RELIN	MINE	HED	INTA	ACT	BRO		ABSENT
PECEIVED BY.	30		L.l			✓.			395	133			. 4013		J1.			DATE	TIME
54.5	ME	RELIN	QUIS	HEDI	3Y: *		1,5		ATE	TIN	ME	RECE	IVED	BY:	92			DATE	TIME
RELINQUISHED BY: DATE TI	ME	RELIN	QUISI	HEDE	BY:			D	ATE	TIN	ΛE	RECE	IVED	BY:				DATE	TIME

3. Results of Analyses

MARYLAND SPECTRAL SERVICES, INC. 1500 Caton Center Drive Baltimore, MD 21227

PCBs BY EPA METHOD 8080 (MODIFIED)

CLIENT SAMPLE ID:	ROGERS ELEC.	METHOD BLANK
LAB SAMPLE ID:	95080309	PS-BLK03
SAMPLE DATE:	08/03/95	
RECEIVED DATE:	08/03/95	(表)
EXTRACTION DATE:	- 08/03/95	08/03/95
ANALYSIS DATE:	08/07/95	08/07/95
MATRIX:	SOIL	SOIL
PERCENT MOISTURE:	9 %	No. of the control of
UNITS:	MG/KG	MG/KG
DILUTION FACTOR:	1	1
COMPOUND (Results are rep	orted on a dry-weight basis.)
Aroclor-1016	0.11 U	0.10 U
Aroclor-1221	0.11 U	0.10 U
W A PROP		
Aroclor-1232	0.11 U	0.10 U

Aroclor-1242	0.11 U	0.10 U
Aroclor-1248	0 44 11	0.40
AFOCTOF-1246	0.11 U	0.10 U
Aroclor-1254	0.11 U	0.10 U
A100101 1234	0.11 0	0.10 0
Aroclor-1260	0.11 U	0.10 U
Surrogate Recovery		
DBC	88 %	97 %

U - Below Reported Quantitation Level MG/KG - Milligram per Kilogram 4. Chromatograms of Samples and Method Blanks

******** MARYLAND SPECTRAL SERVICES, INC. *******************

* SAMPLE NAME:

PS-BLK03

* ANALYSIS DATE:

Aug 7, 1995 14:19:26

* OPERATOR:

KD

* INSTRUMENT ID:

GC-A--ECD C:\DIRECT\DATAA1\RUN.MET

* METHOD FILE: * RAW DATA FILE NAME: C:\DIRECT\DATAA1\0807A.08R

* RUN TIME: 30

25

26

6.119

6.302

* DILUTION FACTOR:

RTX-5 30M X .32mm 2.0 uL INJ

* AMOUNT INJECTED: 1

PCBs BY 8080 MODIFIED

	****** PEAKS D	DETECTED I	LN				*******
	Ret Time	-1 AN 1-17 -		Peak	Peak	Peak	
_#	(min) Compound	Name		Type		<u>Height</u>	
1	1.192			BV	1105269	129937	
2	1.356			VV	657130	94116	
3	1.501			VV	247647	53193	
4	1.592			VV	620374	64769	
5	2.110			VV	315682	57221	
6	2.581			VV	12063	2372	
3 4 5 6 7	2.686			VV	5985	1509	
8	2.733			VV	12246	2413	
9	2.895			VV	4086	1275	
8 9 10	3.006			VB	4085	730	
11	3.226			BB	664	341	
12	3.397	9		ВВ	5801	1578	
13	3.710			BV	3261	690	
14	3.903			VB	703	226	
15	4.176			BV	60816	21014	
16	4.540			VB	993	228	
17	4.686			BV	416	108	
18	4.810			VV	436	105	
19	4.973			VB	1478	270	
20	5.248			BV	1172	335	
21	5.315			VB	1064	380	
22	5.544			BV	434	82	
23	5.691			VB	1789	419	
24	5.990			BV			
27	3.990			Dν	1116	169	

VV

VB

4294

2290

923

422

4.0 to 30.0 min. Low Y=125.371 High Y=185.717 mv Span=60.346

***** MARYLAND SPECTRAL SERVICES, INC. *******************

* SAMPLE NAME:

950803-09

* ANALYSIS DATE:

Aug 7, 1995 15:28:28

* OPERATOR:

KD

* INSTRUMENT ID:

GC-A--ECD

* METHOD FILE:

C:\DIRECT\DATAA1\RUN.MET * RAW DATA FILE NAME: C:\DIRECT\DATAA1\0807A.10R

* RUN TIME:

30

* DILUTION FACTOR:

* AMOUNT INJECTED: 1 RTX-5 30M X .32mm 2.0 uL INJ

PCBs BY 8080 MODIFIED

****** PEAKS DETECTED IN THIS CHROMATOGRAM **********

		PEARS	DETECTED) 114	Inis Ch	ROMATOGR	AM XXXX
Peak					Peak	Peak	Peak
_#		Compoun	d Name		Type	Areá	Height
1	1.197				BV	642264	74364
2	1.358				VV	491797	76473
3	1.504				VV	279274	53066
4	1.592				VV	629708	79200
1 2 3 4 5 6 7 8 9	1.905				VV	30349	7208
6	1.998				VV	38802	5100
7	2.155				VV	36352	4652
8	2.413				VV	19206	1932
	2.583				VV	28002	5729
10	2.728				VV	52321	10650
11	2.892				VV	5799	1452
12	3.032				VV	9770	1314
13	3.224				VV	6982	1751
14	3.315				VV	4932	1041
15	3.397				VV	14033	2251
16	3.703				VV	6412	1503
17	3.759				VV	5527	1929
18	3.829				VB	7411	1857
19	4.174				BB	147985	50547
20	4.684				BV	2418	656
21	4.978				VV	4943	823
22	5.107		87 _{5.4}		VV	1550	393
23	5.243				VV	1333	393
24	5.316				VV	3626	1243
25	5.407				VV	2402	511
26	5.693				VB	2027	451